电影里的聊天机器人都是怎么弄的
⑴ 机器人怎么说话
找到自动聊天机器人app,与它进行对话就好。 可以与它智能对话,及时问答,网络信息,天气,生活小知识,聊天调侃。
对话机器人作为近年来愈发普遍的产品,以各种各样的形态出现我们的生活中:电话客服、文本客服、超市里的导购机器人等;那这些机器人如何实现和我们人类的智能对话的呢?本文将用显浅易懂的文字讲述机器人的对话原理与产品设计要点。
除却问答型的机器人外,市面上常见的还有闲聊机器人,最典型的代表就是微软小冰:无聊了,寂寞了,都可以找小冰说说话,而小冰一般也能给出不错的对话内容。
要满足机器人的闲聊场景,做法和问答型机器人大同小异,就是加入一个闲聊的语料库,这个语料库一般都可以从网上找到,但语料的覆盖范围和提供者所从事的服务有很大的关系,例如阿里云小蜜的闲聊就满满的都是淘宝味,毕竟那些训练的语料大都来自于淘宝体系内用户和掌柜的聊天内容。
而一般的智能客服厂商,为了更好的衔接对话,也为了让用户有一个更好的对话体验,一般也会加入一定量级的闲聊语料库,但这个库一般却是不允许编辑的,里面涉及一些敏感词的管理,以及运营成本的考虑。
⑵ 设计和构造一个自动应答聊天机器人都涉及到哪些技术
主要涉及的有机器人平衡技术,计算机视觉技术,声音识别技术,材料学技术,机械自动化技术,电子科学技术。机器人平衡的技术涉及面比较广,有理学的经典力学,控制科学与工程的控制系统与控制工程专业。主要是通过建立一个自由度调整的平衡方程来做出一个机器人平衡算法,主要基于ZMP(零点力臂判据)。计算机视觉和声音识别技术主要是计算机相关专业和控制科学与工程的模式识别与智能系统专业在做,声音识别我只了解一个大概,主要是研究通过声音输入进行A/D转化并且进行滤波后,通过一个匹配算法对于字库或者命令库当中的条目进行对应,计算机视觉的话目前主要是先通过波尔卷积识别出来所关心的图像部分,然后通过构架识别与纹理识别进行虚拟建模,电影阿凡达采用的技术就是比较前沿的,电影里的人物面部表情就是通过识别演员的面部构建出来虚拟人物的框架然后进行贴图的一个动态系统。材料科学我不太了解,这个一般是在制作成样机的时候会考虑各器件的温度,震动鲁棒性选取适当的材料做一些辅助性的作用。机械和电科很关键,主要是解决的动力学问题和控制芯片问题,如果前面是理论创新的部分,那他们是制造过程当中最关键的一环,主要解决舵机的力学传输,控制信号的处理和传输,各种传感器信号的采集等问题。机器人未来走向的话也要分开来说,平衡算法肯定是越来越先进,但是ZMP恐怕在未来很长时间都会是主要判据,但是通过多关节的配合来实现平衡肯定是主要发展方向。语音识别方面主要是解决方言识别或者是声音信号不那么标准的时候识别率不高的问题。视觉识别方面未来的走向是主要解决抗遮挡干扰问题,目前的主流技术对于遮挡的鲁棒性很差,经常会出现目标被遮挡然后移除遮盖物以后,计算机视觉系统往往会被严重干扰,这个问题目前已经提出了新的识别判据并且已经有了一些初步成果,在未来的几年新的识别判据会被广泛开发和普及。材料学的话我了解的不是很多,应该是在随着材料学的新进展,会有一些对于温度震动鲁棒性差的器件有更好的保护,比如有的器件在一定精度内只能工作在-10到30度内,那么随着材料学的发展有可能制作出能扩展器件的适用温度范围的保温材料。电科与机械方面那只能用日行千里来形容了,几乎每年都会有更好性能的处理芯片和电机出现,这个变化只能用更快,更小,更强来形容。
⑶ 怎么制作人工智能
做一个数据库 做一个查询软件 把所有的回答写到数据库里 用查询软件查询随机抽取答案 因为数据库有模糊查询 当然你机器配置要高 而且工作量不是一个人能搞的,海量的数据需要一条一条输入
⑷ 聊天机器人概述
聊天机器人,是一种通过自然语言模拟人类,进而与人进行对话的程序。
1950年,图灵(Alan M. Turing)在 Mind 期刊上发表的文章 Computer Machinery and Intelligence ,这篇文章开篇就提出了“机器能思考吗?(Can machines think?)”的设问,提出了经典的 图灵测试(Turing Test) 。通过图灵测试被认为是人工智能研究的终极目标,图灵本人也因而被称为 “人工智能之父” 。
1966年,最早的聊天机器人程序 ELIZA 诞生,由麻省理工(MIT)的约瑟夫·魏泽鲍姆(Joseph Weizenbaum)开发,开发用于临床模拟罗杰斯心理治疗的 BASIC脚本程序 。实现技术仅为对用户输入计算机的话语做关键词匹配,并且回复规则是由人工编写的。
1972年,美国精神病学家肯尼思·科尔比(Kenneth Colby)在斯坦福大学(Standford University)使用 LISP 编写了模拟偏执型精神分裂症表现的计算机程序 PARRY 。
1988年,英国程序员罗洛·卡彭特(Rollo Carpenter)创建了聊天机器人 Jabberwacky ,项目目标是“以有趣、娱乐和幽默的方式模拟自然的人机聊天”,这个项目也是通过与人类互动创造人工智能聊天机器人的早期尝试,但 Jabberwacky 并未被用于执行任何其他功能。技术是使用 上下文模式匹配技术 找到最合适的回复内容。
1988年,加州大学伯克利分校(UC Berkeley)的罗伯特·威林斯基(Robert Wilensky)等人开发了名为UC(UNIX Consultant)的聊天机器人系统。UC聊天机器人目的是帮助用户学习UNIX操作系统。
1990年,美国科学家兼慈善家休·勒布纳(Hugh G. Loebner)设立了人工智能年度比赛------勒布纳奖(Loebner Prize)。勒布纳奖旨在借助交谈测试机器的思考能力,它被看做对图灵测试的一种时间,其比赛的奖项分为金、银、铜三等。目前为止,尚无参赛程序达到金奖或银奖标准。
在勒布纳奖的推动下,聊天机器人迎来了研究的高潮,其中较有代表性的聊天机器人系统是1995年12月23日诞生的 ALICE(Artificial Linguistic Internet Computer Entity) 。随着 ALICE 一同发布的 AIML(Artifical Intelligence Markup Language) 目前在移动端虚拟助手的开发中得到了广泛的应用。
2001年,SmarterChild在短信和即时通信工具中广泛流行,使得聊天机器人第一次被应用在了即时通信领域。2006年,IBM开始研发能够用自然语言回答问题的最强大脑 Watson ,作为一台基于IBM“深度问答”技术的超级计算机, Watson 能够采用上百种算法在3秒内找出特定问题的答案。
2010年,苹果公司推出了人工智能助手 Siri , Siri 的技术来源于美国国防部高级研究规划局公布的CALO计划:一个简化军方繁复事务,且具备学习、组织及认知能力的虚拟助理。CALO计划衍生出来的民用版软件就是 Siri虚拟个人助理 。
此后,微软小冰、微软Cortana(小娜)、阿里小蜜、京东JIMI、网易七鱼等各类聊天机器人层出不穷,并且这些聊天机器人逐渐渗透进人们生活的各个领域。
2016年,全国各大公司开始推出可用于聊天机器人系统搭建的开放平台或开源架构。
2010年至今,标志性的聊天机器人产品如下图所示。
总结:随着人工智能相关技术“东风”渐起,自然语言处理研究硕果颇丰,聊天机器人相关技术迅速发展。同时,聊天机器人作为一种新颖的人机交互方式,正在成为移动搜索和服务的入口之一,毕竟搜索引擎的最终形态很可能就是 聊天机器人 。众多人工智能领域的探索者和开发者都想紧紧抓住并抢占聊天机器人这一新的交互入口。
下面从几个维度对齐进行分类介绍。
在线客服聊天机器人系统 的主要功能是自动回复用户提出的与产品或服务相关的问题,以降低企业客服运营成本、提升用户体验。代表性的商用在线客服聊天机器人系统有小i机器人、京东JIMI客服机器人、阿里小蜜等。以京东JIMI客服机器人为例,用户可以通过与JIMI聊天了解商品的具体信息、了解平台的活动信息、反馈购物中存在的问题等。另外,JIMI具有一定的 拒识能力 ,因此可以知道用户的哪些问题时自己无法回答的,且可以及时将用户转向人工客服。阿里巴巴集团在2015年7月24日发布了一款人工智能购物助理虚拟机器人,取名为“阿里小蜜”,阿里小蜜基于客户需求所在的垂直领域(服务、导购、助手等),通过“智能+人工”的方式提供良好的客户体验。
娱乐场景下聊天机器人系统 的主要功能是同用户进行不限定主题的对话(闲聊),从而起到陪伴、慰藉等作用。其应用场景集中在社交媒体、儿童陪伴及娱乐、游戏陪练等领域。有代表作的系统如微软的“小冰”、微信的“小微”、北京龙泉寺的“贤二机器僧”的等。
教育场景下的聊天机器人系统 可以根据教育内容的不同进一步划分。这类聊天机器人的应用场景为具备人机交互功能的学习、培训类产品,以及儿童智能玩具等。
个人助理类 应用可以通过语音或文字与用户进行交互,实现用户个人事务的查询及代办,如天气查询、短信手法、定位及路线推荐、闹钟及日程提醒、订餐等,从而让用户可以更便捷地处理日常事务。
智能问答类 聊天机器人系统可以回答用户以自然语言形式提出的事实型问题及其他需要计算和逻辑推理的复杂问题,以满足用户的信息需求并起到辅助用户决策的目的。不仅要考虑如 What、Who、Which、Where、When 等事实型问答,也要考虑如 How、Why 等非事实型问答,因此智能回答的聊天机器人通常作为聊天机器人的一个服务模块。
从实现的角度来看,聊天机器人可以分为 检索式 和 生成式 。检索式聊天机器人的回答是提前定义的,在聊天时机器人使用规则引擎、模式匹配或者机器学习训练好的分类器从知识库中挑选一个最佳的回复展示给用户。生成式聊天机器人不依赖于提前定义的回答,但是在训练机器人的过程中,需要大量的语料,语料包含上下文聊天信息和回复。
尽管目前在具体生产环境中,提供聊天服务的一般都是基于检索的聊天机器人系统,但是基于深度学习Seq2Seq模型的出现可能使基于生成的聊天机器人系统成为主流。
基于功能的聊天机器人可以分为问答系统、面向任务的对话系统、闲聊系统和主动推荐系统4种。
目前,对问答系统和主动推荐系统的评价指标较为客观,评价方式也相对成熟。而面向任务的对话系统和馅料系统,在给定相同输入的情况下,系统回复形式可以多种多样,对于用户的同一输入,通常有多种合理且数目不固定的回复,这使得很难通过一种客观的机制对其进行评价,所以在评价时需要加入人的主观判断作为评价的依据之一。
通常,一个完整的聊天机器人系统框架如图,其主要包含自动语音识别、自然语言理解、对话管理、自然语言生成、语音合成5个主要的功能模块。需要指出的是,并不是所有的聊天机器人系统都需要语音技术。
例如,以文字方式实现人机交互的聊天机器人系统,就不需要自动语音识别模块和语音合成模块。
Amazon Lex是一种可以在任何程序中使用语音和文本构建对话界面的服务。Amazon Lex提供可扩展、安全且易于使用的端到端(end2end)解决方案,以构建、发布和监控开发人员发布的机器人。下图展示了聊天机器人如何通过对话的方式协助用户完成订花的需求。
另一个典型的聊天机器人框架是Facebook的Wit.ai。Wit.ai积累了大量高质量的对话数据,有效促进了聊天机器人系统的发展,并通过将人工智能和人类智能结合,进一步提升了聊天机器人的智能水平。
聊天机器人的4种分类,包括 问答系统、面向任务的对话系统、闲聊系统和主动推荐系统。
Siri被定位为面向任务的对话系统,为用户提供打电话、订餐、订票、放音乐等服务。Siri对接了很多服务,且设置了 “兜底” 操作,当Siri无法理解用户的输入时就命令搜索引擎返回相关的服务。Siri的出现引领了移动终端个人事务助理的商业化发展潮流。
下图是Siri的技术框架:
2011年2月,IBM耗资3000万美元研发的IBM Watson登上了美国着名智力问答竞赛节目《危险边缘》(Jeopardy),面对节目中充满双管意思的英文问题,IBM Watson能做出分析并在庞大的自然语言知识库中寻找线索,将这些线索组合成答案。最终,IBM Watson压倒性地优势击败了节目中最聪明的人脑,同时创下了这个知识竞赛系列节目27年历史上的最高分。IBM Watson作为IBM公司研发的问答系统,集成了自然语言处理、信息检索、知识表示、自动推理、机器学习等多项技术的应用,形成了假设认知和大规模的证据搜集、分析、评价的深度问答技术。IBM Watson可以分析自然语言形式的数据,通过大规模学习和推理,为用户提供个性化服务。
2012年7月9日,谷歌发布了智能个人助理Google Now。Google Now通过自然语言交互方式为用户提供页面搜索、自动指令等功能。Allo是谷歌在前述工作的基础上发布的语音助手。Allo具备随时间推移学习用户行为的能力。
2014年4月2号
主动推荐系统采用的是一种实现个性化信息推送的技术方式。主动推荐系统并不需要用户提供明确的需求,而是通过分析用户的历史行为数据建立用户画像,从而基于用户画像主动向用户推荐系统认为能够满足用户兴趣和需求的信息。在电商购物(如阿里巴巴、亚马逊)、社交网络(如Facebook、微博)、新闻资讯(如今日头条)、音乐电影(如网易云音乐、豆瓣)等领域均有广泛而成功的应用。主动推荐系统本质上是一项帮助人们解决信息过载(information overload)问题的工具。所谓信息过载,是指用户真正需求、真正感兴趣的东西被淹没在其同类物品的海洋里。 主动的交互方式能够显着提升用户体验,且机器人主动交互的方式更接近真实的人与人之间的对话方式,使得对话更自然。
一种主动推荐的方式,是基于 知识图谱(Knowledge Graph) 的主动推荐系统。例如,在建立音乐领域的主动推荐系统时,可以先建立音乐领域知识图谱和用户知识图谱,然后在进行用户信息搜索的过程中建立起用户的音乐喜好画像,从而更精准地对用户进行音乐推送。
从图中可看出,在用户点播歌曲的过程中,主动推荐系统可以结合音乐知识图谱、用户个人知识图谱,以及用户的历史对话数据,综合给出最优的音乐推荐。
主动推荐系统与问答系统、面向任务的对话系统和闲聊系统被认为是聊天机器人产品的4种主要分类。
⑸ 聊群里的机器人怎么弄的
搜索“冰山QQ机器人”在官网下载一个软件到桌面,登录一个QQ作为机器人,常用的QQ设置为机器人管理员。
在软件上面安装需要的插件如问答系统,智能聊天,定时广播,每日签到,积分系统,QQ群管家,VIP群管,菜单插件,综合游戏等插件,再对机器人的插件功能进行相应的设置。
在软件配置包里面导入机器人配置和菜单配置,如需新增插件将插件介绍区的指令复制到菜单制作界面写好插件名称和插件指令点击编辑。将新增插件名称添加到主菜单里面。
机器人进群以及在群里的功能设置。将登录软件的不常用QQ和设置的机器人软件管理员QQ加为好友,私聊机器人QQ给需要安装机器人的群授权后拉机器人QQ进群,即可在群里发送指令让机器人来管理QQ群。